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A rni~rn~ formulati~ is used to solve the problem of syn~~z~g an impulsive 
correction of the zero position of a linear damped oscillator subjected to a con- 
tinuous perturbation. Analytic expressions are obtained for the corrective impul- 
ses and a system of transcendental equations defining their instants of application, 
The dependence of the processes considered on the dynamic properties of the 
oscillator is analysed, using the numerical data obtained. 

1, Statrment of the problem, We consider on a given time interval it,, 2’1 
an impulse-controlled oscillator with nonnegative friction, subjected to a continuous 

perturbation 

c”+2az’+k% = i U$3(t--t)J+v(t) (1.1) 
k=l 

s (4%) = 20, ~'&2> = Yo 

The corrective control is restricted by the number of impulses n and by their combined 
magnitude (correction resource) n 

2 IUlrIG: (1.2) 
k=l 

The perturbation 2, (t) can be represented by any arbitrary measurable function bounded 
in modulo by a known continuous positive function p (it) 

I v(t) I <pm to<t\(T (1.3) 

We pose the problem of synthe,sizing a control {uk, tk}, restricted by (1.2) and to < 

t1< - * * < tn < T, guaranteeing a minimum value of the final deviation of the po- 
sition of the oscillator from its zero position, i. e. of the functional 

J = 1 x m I (1.4) 

We assume that the phase state (2, 2’) of the oscillator is known at every instant of 

time. The instants of application of the impulses tl, . . . , t, are chosen before the 
beginning of the process. The choice is based on the computation of the worst perturba- 
tion, and it must be reviewed during the process in accordance with the actual perturba- 

tion. 
The problem stated above is a differential-impulse game [l]. The case ~1 = k = 0 

was studied in [2]. 
mrhg the analysis of the problem it is expedient to perform the change of variables 

2 (t) = eACT+ y (t) 

where y = ( , ) th 2 ST* is e vector of the phase state of the system [ 1.1) .and eAt is the 
fundamental matrix of solutions of the corresponding normal homogeneous system. From 
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the form of the functional (1,4) it follows that it is sufficient to consider only the first 
coordinate of the vector z which coincides at the end of the process with the value 
s (T). below we shall denote this coordinate simply by the letter z without any indices. 

Thus, in the case of real eigenvalues A,, s = --a Tfas - ka we consider the vari- 
able 

z(t) = 
&&(T-‘) _ ~&U-t) &v-t) _ ,hr(T-+ 

?k2-~1 
x(t)--- AZ-Al 

x'(t), 1 kl< u (1.5) 

2 (t) = I(1 4 01 (T - t)) x (t) + (LT - t) i @)I e-a(T-ff, lkl=cr (1.6) 

and in the case of complex values AI, a = --(II F i#I where 8 = vm, the 
variable 

2 (t) = [(a sin p (T - t) + p CO9 p (T - t)) 2 (t) + 
i (t) sin /3 (T - t)l e-a(T-f) / #I 

By virtue of (1.1) and (1.2), the variable z (6) is defined by the equations 

2’ = Q, (t, V, 2 (tk+) = 2 (tk-) + Cp (tk) Uk+ k=l, . . . . n 

(1.7) 

(1.8) 

The initial condition for this variable can be found from one of the relations (1.5) - 
(L7) by setting t = to, 2 == zs, i = y,. 

2. Solution of the problem for arbitrary vrluer of t,, * I l , t,,. 
The problem of synthesizing the optimal correction (strategy of the controlling player) 
for arbitrary values of tI, . . ., t, is solved using the method of dynamic programing. 
The guaranteed value of the functional J = 1 z (2’) 1 for ( n - k + 1 )-step prncess 
which begins at the instant t& before the action of the impulse uk, is determined by the 
state 2 (tk-) = Sk, i.e. the residual correction resource 

Q, k=l. 
k-l 

Qk = 
Q- 2 Iuij, k=2,...,n 

\ i=l 

and by the values th, . . ., t,. We shall denote this quantity by &,_r.r+I @a”“, I& tr,, 
* * *, i&n>. The value of the stated game is the ~ncti~ 

w,&, Q, t,, . . . A) = ma &dzi, QA.. . A) 
qf*, fJ (28 1) 

The m.current equations (2.2) and the terminal condition (2.3) follow from the principle 
of optimality 

&a-k+l(Zk-, qk, &, * l . ,&a) = (2.2) 

min m= &-k @i+l~ qk+f, tkil 
=k v[fk* jk+ll 

,..-,&), k=i,....n-1 

& @?a-, Qn, tn) = (2.3) 

Computations of the extrema in (2. Q-(2.3) are stipulated by the restrictions /u~!<Q~, 
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(1.3) and the relations (1.8). From (2.3) we obtain the equality 

T 

S1 (ZR, qn, tn) = max (0, 1 zns 1 .- QnV (tn)) + J P Ct) I Cp tt) I & 
L 

which shows that the function S, does not decrease with increasing I z,,- I , and the so- 
lution of (2.2) for k = n - i reduces to finding the quantity 

min ,max 
Un-1 “h-1. &I 

Izne ) 

The solution of this problem is equivalent to finding the extrema in (2.3) and shows, 

that the function S, does not decrease with increasing I z,,-l either, etc. Thus all equa- 

tions of (2.2) and (2.1) have the same solution , the worst interference has the form 

21 (!I = p (t) sign 2 (tj'), tj 4 t < tj+l, j =O, 1, . . . . n 

and the optimal correction impulses are described by the equations 

(2.4) 

nk = -sign zk- min {qk, ( zkw 1 / 1 q (tk) 1 }, k = 1, . . . , n t2. 5, 

The impulse ukis called the compensating impulse when the system under consideration 

arrives, in the absence of perturbations on the interval (tk, T) , to the state 5 (T) = 0 
at the instant T . This is clearly equivalent to the equation z (tk+) = 0. 

The relations (2.5) imply directly that all impulses, except perhaps the last one, are 
compensating ones. Thus, if the optimal correction consists of m nonzero impulses 

(m < n), then 1 uk 1 = 1 zk- 1 / 9 (tk) 1, k=i,...,m-1, I u,,, I d q, (2.6) 

and in an extremalprocess, i.e. in a process with the interference (2.4) and impulses(2.5), 

the following relations are satisfied: 

1 zl- 1 = 1 z,, 1 + F (to, tl), 1 Zj- 1 = F (tj-1, tj), i = 27. . . 9 m t2e7) 
1” 

F V’, t”) = J P(f) I cp P) I at 
i’ 

Moreover, the guaranteed value of the functional (1.4) is expressed by the equation 

F@?n,T), cl7n>J~m-lIl(P(tm)l 

J = ( zk, I+ F (h-1, T) - qm 1 cp (tm) 1, qm < , i;‘-; , (2.8) 

From the compensating property of the impulses ul, . . ., u,_l it follows that %I-+= 0 

when m > 2. The expression (2.8) obviously represents also the functions Sk, k = 1, 
. . . , m corresponding to the extremal process, and the value of the game is O, (Za, 

Q, t1, - * -, t,>. 

3. Optfmisrtion of the inrtrntr of application of the impulaer. 
Solution of (2.1) - (2.3) gives a synthesis of the worst interference (2.4), and of the op- 

timal correction (2.6) corresponding to the arbitrary times, tk of the application of the 
impulses uk. To find the optimal values i!r, . . ., t, , we must minimize the function 

am (%7 QY tl9 - - -9 tm) with respect to the variables sought. 
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We see from (I. 8) and (2.6) that the effectiveness of the correction time tk is deter- 
mined by the value of the function 1 Q, (t) 1 at this point. In tk aperiodic case 
(f k 1 < a) the function C# (t) is positive and decreases monotonously on the interval 
[t,,, 2’1. In the oscillatory case (1 k 1 > a) this function possesses the above properties 
on the interval [‘t, Z’), where the point 

a=T - A- arctg $ 
P 

represents the absolute m~mum of the function 1 4, (t) 1 on the interval (- 00, Tl. 
In both cases we have QI (T) = 0. 

The above properties of the function g, (t) lead to the assertion that the optimal cor- 
rection must be carried out on the interval [0, T) , where 

The above assertion becomes trivial when 6 = to. Let 0 > to (in the oscillatory case) 
and t, i\< tl < ? < tr+i (1 < 1 \< m). From (2.4) and (2.6) it follows that 
1 2 (z-) 1 = 1 2:-l I + F @l-l, 7) - 1 ul 9 (tJ I. If the impulse I ul 1 is transferred 
at the instant tr’ = ‘6, then for z < tl+l , by virtue of the inequality I 9p (tJ I < 9 (z> 
the quantity 12 (I?) 1 is reduced in value without additional use of the correction resource, 
andinthecaseofz = tr+r the same value of I z (-x+) 1 is guaranteed without impairing 
the economical use of the resource. The same effect can be achieved by transferring all 
impulses preceding the instant T to the interval [‘t., T), and this proves the assertion. 

The optimal value of &must minimize the function (2.8) on the interval [t,,,-r, TI. 
It is easily seen that this function is unimodal with respect to tm and, in the case of 
m > 1, has a m~imum at the point defined by the equation 

Qm CP (r) = F (L-i, t>, L-1 < t < T 

Here the last correction is a compensating one, uses up the remaining resource q,,, , and 
the quantity (2.8) assumes the value 

J = F (tmt T1 (3.11 

Execution of two or more optimal impulses in the worst case (2.4) is possible if the re- 
source Q exceeds in magnitude the quantity necessary for carrying out a compensating 
correction at the most effective instant of time 8, i.e. when 

Q > [I zo I + F (to, %I 1 Q, @I (3.2) 

Otherwise we must carry out a single correction at the instant 8 using the whole of the 
resource Q. This guarantees a final deviation which does not exceed 

J = 1 20 I + F (to, T) - Qq (0) 
below we consider a case in which the condition (3.2) is satisfied. 
If we admit a unique corrective impulse (n = 1), the optimal value tr minimizing 

the quantity (2.8) on the interval f6, 2’1 is a solution of the equation 

Qcp (t) = I zo I + F Oo, t) 
Such a correction is also a compensating one and the guaranteed value of the functional 
is described by (3.1) in which m = 1. 
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Let the resource C& of the last correction be distributed over two compensating im- 
pulses nm’ and %+I so that 1 u,,,’ 1 = pqm and 1 U~+~ 1 = (1 - p) qrn, where 
0 < Jo < 1. The time instances &,’ and tm+% are determined as functions of the 
parameter Jo by the equations 

F (&-D t,‘> = yq,cp (tm’), F (tm’, t,+J = (I - P> qm(P (h+d 

From the above equations it follows that tm’ (0) = t;;l_l, t,’ (1) = tm+l (0) = 
tm+l (I) = tk and the derivatives of the functions tm’ (p) and tm+r (p) have the 

form d&’ (~1) I dp = 6, (tm’, FL) 

We clearly have 

(3.3) 

The function cp (t) is strictly decreasing on the interval [;tm+l, 2’1 and the value of 
CD (tin, i) is equal to the value of the derivative of tm’ (p) at the point p = 1. This 
derivative is obviously positive for all p e [O, 11, therefore the expression (3.3) is 
positive and the function tm+% (~1) has a maximum on the interval (0, I) which exceeds 
the value of t,. 

The above analysis shows that the number of impulses should be increased to maximum, 
i,e. for the optimal correction we have m = Iz. 

Thus, the optimal correction consists of n compensating impulses using up the whole 
resource Q and d~~ibu~d on the interval f&T). When the worst interference (2.4) 
acts, the above statement is expressed, on the strength of Eqs.(Z. 6) which hold for k = 
1 n, and of the relations (2.7), by the following condition (3.4) and the inequal- 
itks ;3:15) i 12 

1% I/P'(h) + 2 F@k-1, tk)i(P(tk) = Q 
k=l 

(3.4) 

8 < tl < . . . < tn < T (3.5) 

Thus, the problem of choosing the optimal instants of application of the corrective 
impulses is reduced to that of minimizing the function F (tn, T) under the conditions 
(3.Q with to < ti < . . . < tn < T. The solution of this problem has the properties 
(3.5). 

4, Rbrlfertfon of the eorr&ctfon, In order to generalize the procedure of 
solving the problem of correction of real objects and of accounting for the perturbations 
taking place, it is expedient to reduce the description of the object to the dimensionless 
quantities and zero initial condition. If at the instant t the object is in the state z (t), 
then we can assume that the motion had begun at the instant of time t* from its initial 
zero state, and was executed under the action of the worst interference. This value of t* 
is obviously given by the equation F (t *, t) = 1 z (t) 1. The function p (t) is addition- 
ally defined for t < to by the quantity p (to). The passage to the dimensionless quan- 
tities t’, z’, CZ’, k’, Q’, u’ and uk’is carried out according to the formulas 

t = (T - t*)t’ + t”, 2 = F (t*, T)z’ (4.1) 



Mlnimax Impulsive correction of perturbations of a linear damped oscillator 235 

It can be confirmed that the above transformation reduces the initiald;oblem to that 
with a unit time interval, zero initial conditions and, in the case of P (t) = COnSt, with 
a unit perturbation intensity. The functions cp (6, p (t) and F (t, T) become cp’ (t’), 
p’ (t’) and F’ (t’, 4) with all the properties used above preserved, and the results pre- 
viously obtained remainvalid for the new problem. The optimal set of the times of appIi- 
cation of the impulses is an internal point of the restricting set 0 < t,’ < . . . Qtn’\( 
1, therefore the problem of minimizing the function F’ (t’, 1) on this set under the 
condition 

i: JVk, &‘)/CP’ k’) = Q’ (4.2) 
k=1 

can be solved using the Lagrange method. The necessary conditions for an extremum 
obtained in this manner for the unknown variables, consist of Eq. (4.2) and the system 

9’ (&+I) = A (6-r, tr’) Cp’ @a’), k = 1, . . . , n - 1 (4.3) 

It was shown in Sect. 3 (inequalities (3.5)) that the optimal values of the times of 
application of the impulses are distributed on the. interval [0’, 1). The function cp’ (t’) 
is positive on this interval and decreases monotonously, therefore 0 <A(&, tk’)\( i 
for 8’ < i&’ < 1 and A (i&-i, tk’) = 1 O&y When tk’ = 6’. From this it fOlloWS 
thatthe system (4.3) has a unique solution tk’ (a), k = 2, . . . . n for every valueof 
&’ = s E l6’, 1) With tk' (8') = 8', k = 1, . . . . ?L Moreover,if 8’ < S < 1, 
then s = tl’ < ts’ < .*. < t,’ < 1. 

L.et us now consider the left-hand part of Eq.(4.2) as a function of q (s) obtained by 
setting tk’ = tk’ (s). The values of this function are easily obtained by solving con- 
secutively Eqs.(4.3). To find the parameter s generating the Optimal set {tk’ (s)), 
we must solve the equation 

Q(S) = Q’, 0’<S<1 (4.4) 

If this equation has more than one solution, then the optimal set of the corresponding 
collection of sets tl’ (s),..., t,’ (S) is the set with the largest value of t,’ (8). 

When a i’ictitiats beginning of the process has to be introduced (i. e. when we have 
a nonzero initial condition), it may happen that the procedure described above yields a 
value of $1 which is smaller than the initial to. In this case we have two possibilities , 
if all roots of Eq. (4.4) coinciding with the supposedly optimal values of ti’lie to the left 
left of to’, then the first correction ought to be carried out at the beginning of the pro- 
cess, i. e. ti = to , otherwise the best root of (4.4) chosen from amongst those lying 
on the interval [to’, 1) must be equated with the value tl’ = t,‘. To find the values 
t2’, ..-, tn’ when tl’ = t,’ (or tl = to) *it is ~ffici~t to pass to the problem with 
zero initial condition, the number of impulses equal to n - 1 and the resource QI = 
Q - I 20 1 / t cp (to) 1. 

We used a numerical method of finding the optimal instants of time ti’, . . ., t,’ 
described above, for the case of p (t) = const and for various values of cc’, k’, Q’ and 
n . The functional relations tz’ (s), , . . , t,’ (s) were found to be monotonously increasing, 
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consequently the solutions of the system (4.2), (4.3) ace unique. 
The relations t,’ (Q’) and J (Q’) obtained for each parameter pair (a’, k’) are analog- 

ous to the corresponding relations given in [2] for the case a’ = k’=O . The only essen- 

tial difference is present in the oscillatory case for 0 > 0. Here, as it was shown in Sect. 

3, a unique corrective impulse at the instant 8 is applied for the values of the correction 
resource from the interval IO, F (0, 0) / cp @)I and the relationship J (Q’) is linear. 

Fig. 1 

The curves shown in Fig. 1 correspond to a three-impulse correction and to the follow- 

ing parameters: for the curves 1, 2 and 3 , k’ = 1.5 and a’ = 1.49, 0.75 and 0, for 
curve 4 , k’ = 1 and CL’ = 0 , respectively. As we see, the guaranteed final deviation 

increases with decreasing friction a’. 

Other numerical results show that when the quantity max {a’, k’} decreases, the curves 
J (0’) in all cases move upwards and approach the corresponding curves given in [2]. If 
max {a’, k’} increases, the oscillator becomes less susceptible to perturbations (with ce- 
spect to the functional) and the cucves J (Q’) approach the abscissa axis. 

We can improve the guaranteed value of the functional of the problem when the per- 

turbation deviates from its worst mode, using the following idealized algorithm for syn- 
thesizing the instants of time of application of the corrective impulses. Let us assume 
that m impulses remain to be applied and the perturbation deviates from its worst mode 
on a certain interval before previously computed instant of application of the first of the 
remaining impulses, This produces a deviation of the quantity 1 z (t) ) from the value 
corresponding to the worst mode, and the quantities t,, . . . . tm ace recomputed using 
the procedure described above. This recomputation is carried out for every instant of 
the interval in question and ends either when the cunning time coincides with the im- 

proved value of tl, or when the worst interference is restored. After applying the con- 
secutive impulse, the process is repeated with a coccespondin@y diminished correction 
moucce and the number of impulses. 

For the practical synthesis of the instants of time of application of impulses, an algo- 

rithm is possible, which differs from the proposed one in the frequency of the times of 
recomputing the values of tI, . . ., t,. The frequency interval must not be less than the 

time necessary for description of the computation. 

An approximate synthesis of the instants of time t,, . . ., t, can be realized with the 
help of the pceviaasly computed relationships t,’ (Q’) corresponding to the impulse num- 

bers n, n - 1,. . ., 1 and a sufficiently dense network of parameters ai’ and ki’. The 
latter parameters must be connected by the relation ski’ = ai’k, since the tcansfocma- 
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tion (4.1) changes them proportionally. Moreover when the perturbation deviates from 
its worst mode, the fictitious initial time t* ixxreises and this leads, by virtue of (4. l), 
to decrease in the values of a’ and k’. Thus the network of parameter a’ (or k’) repre- 
sents a decomposition of the segment [0, (T - t,*)a], where to* is a fictitious initial 
time corresponding to the initial conditions of the problem, 

In this manner, the initial correction problem which has, in the case of a constant in- 

tensity,eight parameters x0, ya, T, a, k, p, Q and n is reduced, by means of trans- 
formation (4. l), to a problem with four parameters a’, k’, Q’ and n. Thus a synthesis 
of a correction for a real object requires only n one- parameter (cc’ or k’) relations 

t1’ W. 
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Particular kinds of periodic solutions in unison - quasi-normal oscillations simi- 

lar to those of an oscillator - are separated in conservative multidimensional 

systems. A new definition of normal oscillations, more precise than known ones 

is proposed. It is applicable to a wider class of nonlinear systems. A method of 
appro~ma~ de~rmination of quasi-normal oscillations for a particular kind of 
nonlinear systems is described and some examples are presented, 

In [l, 23 the supposition was made that singular analogs of characteristic solu- 
tions, often called normal oscillations, can exist in the class of nonlinear conser- 
vative systems of the form s”i = $U / azi, U (0) = 0, V (-x) = U (r) and 
X = {zr,z~, * * ., xn}. It was assumed that normal oscillations are determined 
by the following characteristic properties: oscillation frequencies of all coordi- 
nates are equal, all coordinates attain their maximum deflection and vanish si- 
multaneously, and the displacement of coordinates at any instant of time is a 
single-valued function of one of these. 

From the physical point of view the above definition of normal oscillationshas 
the follo~ng sho~corn~~: the c~rac~r~tic properties of normal oscillations 
are noninvariant under the change of the coordinate system. are interdependent, 

comprise a narrow class of nonlinear systems, and do not permit the formulation 
of the problem of determining normal oscillations. 

In this paper the concept of normal oscillations of nonlinear systems is extended, 


